Вывод озоноразрушающих веществ и фторсодержащих газов в Российской Федерации
  • Арктический совет
  • Нефко
  • Министерство природных ресурсов и экологии Российской Федерации
  • МЦНТИ
Назад

Энергоэффективность

Прямое влияние холодильных систем на глобальное потепление заключается в непосредственных выбросах хладагентов с высоким потенциалом глобального потепления (ПГП) в атмосферу. Но помимо прямых различают еще и косвенные парниковые выбросы оборудования, наиболее значительная часть которых связана с производством электроэнергии для обеспечения его работы.

В России, по данным Минэкономразвития, производство 1 кВт*ч электроэнергии в среднем сопровождается парниковыми выбросами в количестве 0,51-0,52 кг СО2-эквивалента. Системе холодоснабжения, например, небольшого склада для работы требуются десятки тысяч кВт*ч в год, поэтому снижение энергопотребления даже на несколько процентов способно существенно уменьшить ущерб, наносимый окружающей среде.

Для оценки энергоэффективности холодильных систем традиционно используют холодильный коэффициент — отношение холодопроизводительности к затраченной энергии.

Для повышения энергоэффективности холодильного оборудования применяются следующие подходы:

  • переход на природные хладагенты: диоксид углерода, аммиак, углеводородные хладагенты и другие
  • применение инновационных технологических решений: инверторные приводы, электронно-коммутируемые электродвигатели, теплообменники нового поколения, системы оттайки горячим газом…

Природные хладагенты

Снижение энергопотребления при переходе от использования гидрохлорфторуглеродных (R-22) и гидрофторуглеродных хладагентов к системам на аммиаке (NH3, R-717), оснащенным тепловыми насосами для рекуперации тепла и подогрева воды, может достигать 40%. Дополнительное уменьшение энергопотребления обеспечивают такие усовершенствования, как понижение температуры конденсации, повышение температуры испарения, использования компрессоров с регулируемой скоростью вращения и многоступенчатых систем.

Диоксид углерода (CO2, R-744) показывает высокую эффективность при применении в низкотемпературных каскадах каскадных систем (NH3/CO2). В холодном и умеренном климате энергоэффективность холодильного оборудования на CO2 может быть выше, чему у систем на ГФУ, на величину до 10%.

Для низкотемпературного охлаждения (до -60°С и ниже) эффективным хладагентом может быть воздух.

Технологические решения

На стороне высокого давления на холодильный коэффициент влияют следующие факторы:

  • разность между температурами окружающего воздуха и конденсации хладагента
  • соответствие оборудования и материалов условиям эксплуатации (климат, агрессивность среды)
  • характеристики вентиляторов (энергоэффективность, тип регулирования скорости вращения)
  • возможность использования естественного охлаждения (фрикулинг)
  • переохлаждение хладагента.
  • рекуперация тепла.
  • правильное размещение и надлежащее обслуживание.

Уменьшение разности между температурами конденсации и окружающего воздуха с 15 до 8…10°С (за счет использования соответствующего конденсатора) в летний период способно снизить энергопотребление на величину до 15—20%.

Конденсаторы с трубками меньшего диаметра позволяют сократить количество заправляемого хладагента и уменьшить материалоемкость оборудования. Для защиты от агрессивного воздействия внешней среды трубки теплообменников могут выполняться из коррозионностойкой нержавеющей стали, а алюминиевое оребрение — защищаться специальным покрытием.

Повысить эффективность работы конденсаторов позволяют системы орошения, адиабатические предохладители воздуха, а также плавное регулирование скорости вращения вентиляторов.

Вентиляторы с энергоэффективными электронно-коммутируемыми (EC) электродвигателями с постоянными магнитами и плавным регулированием скорости вращения способны уменьшить энергопотребление конденсатора на величину до 80-85%. Так как потребляемая мощность вентилятора пропорциональна скорости вращения, возведенной в куб, то уменьшение скорости вращения на 50% снижает потребляемую мощность на 83-87%.

Еще один путь повышения эффективности работы конденсатора – увеличение поверхности теплосъема, например, за счет микрорифления внутренней поверхности трубок.

На стороне низкого давления (стороне испарителя) на эффективность влияют:

  • особенности режима эксплуатации
  • разность температур испарения и окружающего воздуха
  • энергоэффективность вентиляторов
  • размещение испарителя и организация процесса его оттайки.

Один из способов существенно повысить эффективность (и безопасность) эксплуатации испарителей (воздухоохладителей) холодильных камер — использовать для их оттайки горячий газ, то есть горячие пары хладагента.

При такой оттайке часть нагретого газообразного хладагента с линии нагнетания вместо конденсатора направляется в воздухоохладитель, и, проходя по трубкам теплообменника, оттаивает его. По мере прохождения по трубкам воздухоохладителя, горячий газ охлаждается и конденсируется. Сконденсировавшаяся парожидкостная смесь поступает в ресивер.

Использование горячего газа наиболее эффективно, когда одновременно оттаиваются не более 20% испарителей, а остальные испарители работают в режиме охлаждения.

Дополнительные материалы

Уважаемый посетитель! Сайт www.ozoneprogram.ru использует файлы cookie и похожие технологии, чтобы с помощью достоверной и персонализированной информации улучшить работу сайта, повысить его эффективность и удобство. Продолжая просмотр сайта, вы соглашаетесь на использование файлов cookie в соответствии с предупреждением об использовании файлов cookie на сайте www.ozoneprogram.ru. Если вы не согласны с использованием файлов cookie, настройте браузер или откажитесь от посещения сайта.