Факультет Энергомашиностроение

Холодильной, криогенной техники, систем кондиционирования и жизнеобеспечения

1914 г. – первая холодильная лаборатория в России (ИТУ, В. Е. Цидзик)

1920 г. – первая кафедра холодильных и компрессорных машин (ХКМ) МВТУ им. Баумана (В. Е. Цидзик). Оставалась единственной кафедрой в **CCCP ДО 1947** 1987 г. по н. в. кафедра "Холодильной, криогенной техники, систем кондиционирования И жизнеобеспечения"

НАПРАВЛЕНИЯ ПОДГОТОВКИ: СТУДЕНТОВ

СПЕЦИАЛИСТОВ (ИНЖЕНЕРОВ):

«Специальные системы жизнеобеспечения»,

«Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов»,

НАПРАВЛЕНИЯ ПОДГОТОВКИ: СТУДЕНТОВ:

4

Бакалавров по направлению

«Холодильная, криогенная техника и системы жизнеобеспечения»

профили:

- 1. «Холодильная техника и технологии»
- 2. «Криогенная техника и технологии»

НАПРАВЛЕНИЯ ПОДГОТОВКИ: СТУДЕНТОВ:

5

Магистров по направлению «Холодильная, криогенная техника и системы жизнеобеспечения»

Программы:

- 1. «Холодильная техника и технологии»
- 2. «Криогенная техника и технологии»
- 3. «Системы кондиционирования воздуха»
- 4. «Регулирование и автоматизация холодильных установок и систем кондиционирования» совместно с компанией «ЭЙ-ЭЙЧ-АЙ КЭРРИЕР»
- 5. «Системы жизнеобеспечения»- новая

Число студентов:

- •Общее- 367
- •специалистов 160
- •бакалавров 163
- магистров 44

Число аспирантов - 17

Преподаватели кафедры

- Всего 46
- Штатных— 14
- Совместителей- 32
- Из них:
- Профессоров 12
- Доцентов 17
- Старших преподавателей -1
- Ассистентов 16

Преподаватели кафедры

- 5 профессоров кафедры являются членами Международного Института Холода,
- Все штатные преподаватель и 7 совместителей являются членамикорреспондентами и академиками Международной Академии Холода

Кафедра активно сотрудничает со следующими организациями:

- ОАО «Криогенмаш», НПО «Наука» и НПО «Гелиймаш» ОАО «Остров» проводят практику и дарят оборудование;
- « Эй-Эйч-Ай Кэрриер» разработка совместной магистерской программы, лабораторное оборудование,
- ОАО «Звезда», «Фармина», «Митсубиши электрик» дарят оборудование
- «Джонсон Контролс», «ГЕА Грассо рефрижерейшн», «Данфос», «Химхолодсервис», «Альфа Лаваль», «Даичи», «Промхолод», «Хоневелл», «Эмерсон Климат», ОАО «Холодмаш», ГНУ «ВНИХИ» и др. трудоустраивают выпускников кафедры

Уникальность кафедры

Постулат первый:

Такой кафедры нет ни в одном другом вузе или университете (в России, СНГ, Англии, Франции, Норвегии, Чехии).

Что объединяет эти области деятельности? — **это инженерная криология** — наука о холоде, методах его генерации и использования.

Уникальность кафедры

Постулат второй:

Все направления подготовки на кафедре Э4 сегодня реально востребованы в России (также в зарубежных странах), но особо важные сегодня для России направления—это холодильное и криогенное машиностроение, жизнеобеспечение, конкретно для:

- Продовольственной безопасности России
- Космических и оборонных программ
- Кондиционирования и жизнеобеспечения специальных объектов

Уникальность кафедры

Постулат третий:

Что определяет уровень подготовки инженеров? — В первую очередь это уровень профессуры! Сегодня на кафедре работают профессоры:

- 1. Архаров А. М.
- 2. Архаров И. А.
- 3. Бондаренко В. Л.
- 4. Буткевич И. К.
- 5. Жердев А. А.
- 6. Гончарова Г. Ю.

- 7. Меркулов В.И.
- 8. Смородин А. И.
- 9. Галкин М.Л.
- 10. Цыганов Д.И.
- 11. Романовский В. Р.
- 12. Лавров Н.А.

Виды деятельности лаборатории

- Учебная деятельность
- КНИРС
- НИР
- Научно-исследовательская деятельность

Холл лаборатории 34

Второй учебный лабораторный зал

Костюмы космонавтов

Студенты за работой в учебном лабораторном зале

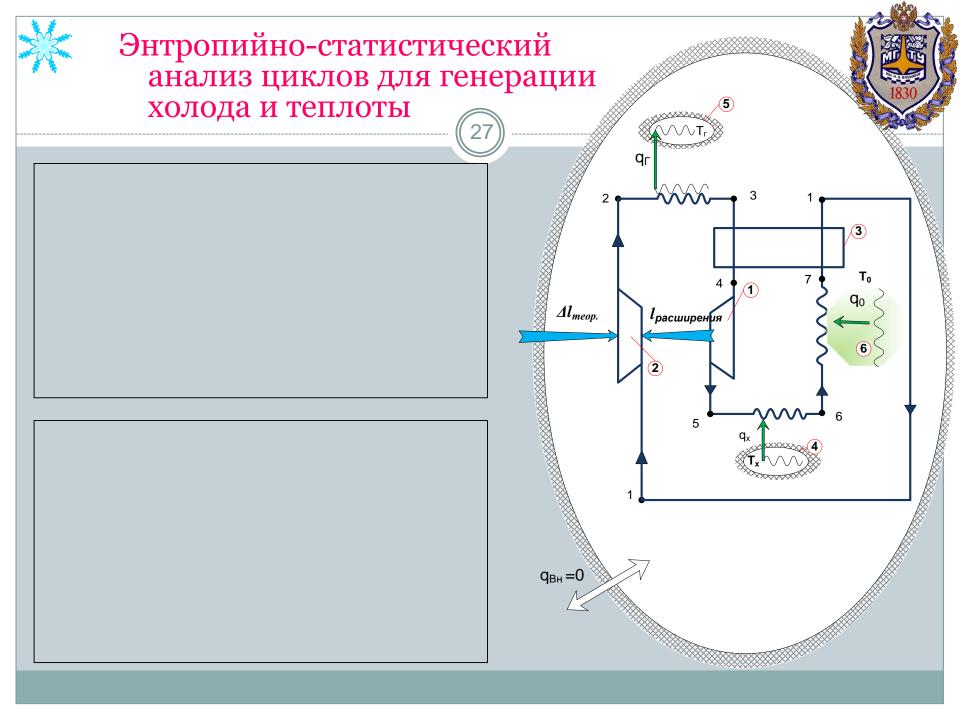
Стенд для испытания спирального детандера

Вентиляционные системы

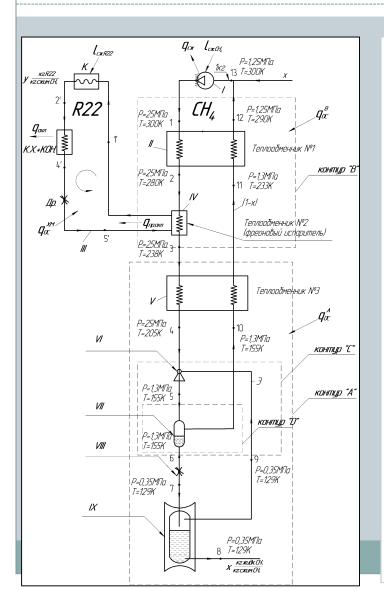
Холодильная установка

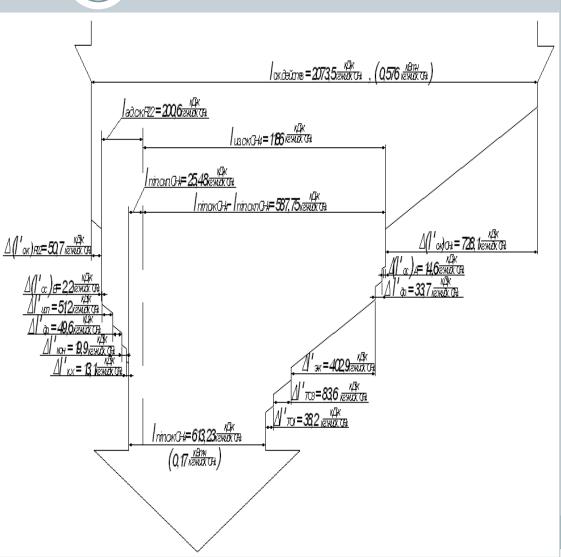
Мастерская лаборатории

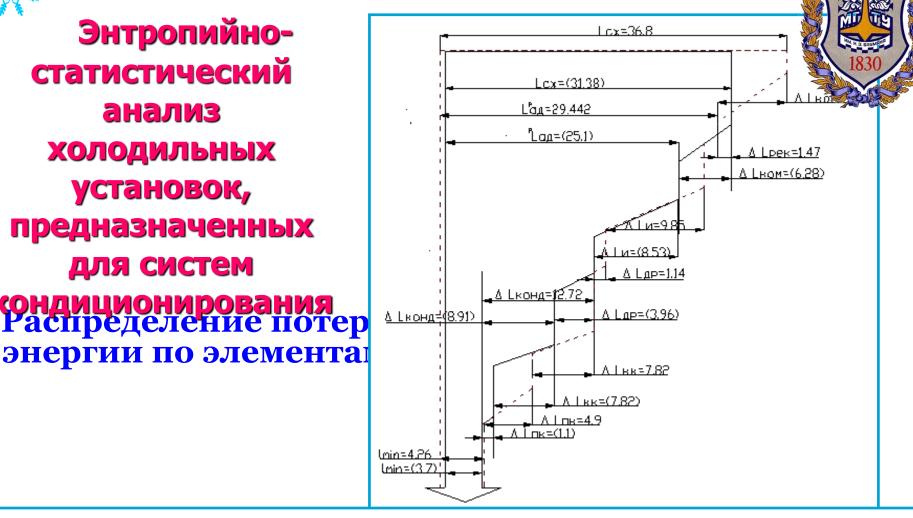
Учебные стенды лаборатории



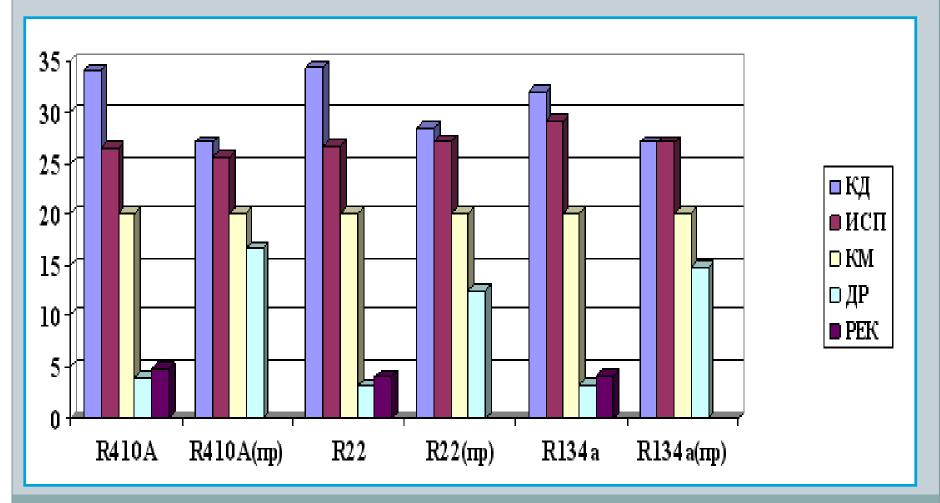
Учебные стенды лаборатории


[26]


•Научная работа кафедры

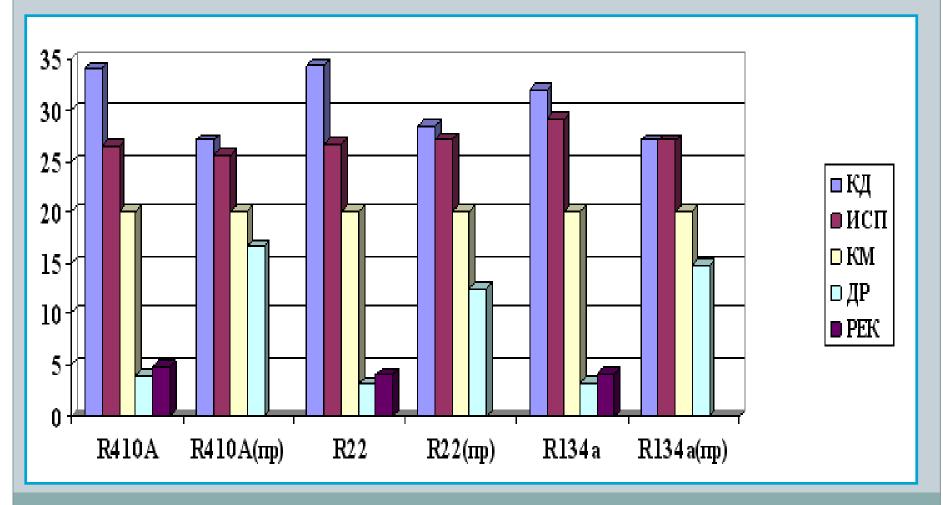

Распределение потерь по элементам ожижителя природного газа

Энтропийностатистический анализ **ХОЛОДИЛЬНЫХ** установок, предназначенных для систем <mark>кондиционирования</mark> Распределение потер



Хладагенты	$\Delta l_{n\kappa}$	$\Delta l_{\kappa\kappa}$	$\Delta l_{\kappa \delta}$	$\Delta l_{\partial p}$	Δl_u	$\Delta l_{\it pex}$	$\Delta l_{\kappa o \imath n n p}$
R4 10A	16.6(4.6)	17.5(22.3)	34.1(27.0)	3.86(16.6)	26.5(25.5)	4.8	$2\theta.\theta(2\theta.\theta)$
R 22	13.2(3.5)	21.1(24.9)	34.4(28.4)	3.1(12.6)	26.6(27.2)	4.0	20.0(20.0)
R1 34a	10.2(0.75)	21.7(26.2)	32.0(27.0)	3.3(14.8)	29.1(27.0)	4.2	20.0(20.0)

Распределение потерь по элементам холодильной установки



Распределение потерь по элементам холодильной установки

Получение изотопов неона методом низкотемпературной ректификации

Чистота получаемого неона

Ne-20

Ne-20		99,99	
Ne-21	%	0,002	
Ne-22		0,008	

Ne-20		0,008	
Ne-21	%	0,002	
Ne-22		99,99	

Ne-21

Ne-20		16
Ne-21	%	72
Ne-22		12

Концепция использования диметилового эфира (Н3С-о-СН3) на дизельном авторефрижераторном транспорте одновременно в качестве рабочего тела рефрижератора и дизельного

Автомобили - рефрижераторы на диметиловом эфире

Ожижитель природного газа производительностью 1,5 т/час

Принцип работы и конструкция роторного

BOJHOBOTO KDUOTEHEDATODA

I-II – вход и выход расширяемого (активного) потока газа; III-IV – вход и выход компримируемого (пассивного) потока газа;

1,2- газораспределитель активного и пассивного потоков газа, соотв.;

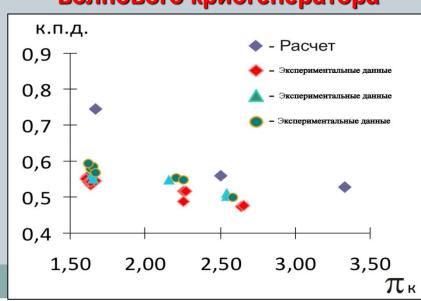
3- ротор;

4,5-сопла активного и пассивного потоков газа соотв.;

6-корпус ротора;

7-вал ротора;

9-10-ведущая и ведомая магнитные полумуфты;


11-керамическая втулка;

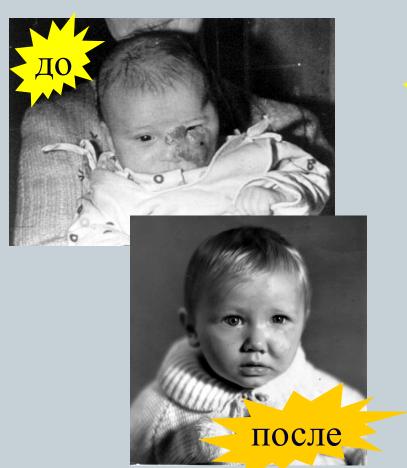
12-двигатель.

Ротор волнового криогенератора.

Результаты экспериментальных исследований роторного волнового криогенератора

РАЗРАБОТКА КРИОГЕННЫХ ТЕХНОЛОГИЙ ДЛЯ ХИРУРГИИ

Работа выполнялась по просьбе медиков и совместно с Российским Государственным медицинским университетом


Одной из сложнейших проблем хирургии детского возраста является лечение доброкачественных сосудистых опухолей (гемангиом).

Особенно бурно растут гемангиомы у детей первого полугодия жизни в области головы и шей.

Результаты разработанной методики криогенного лечения

(Профессор Буторина А.В.):

Для лечебного воздействия используется жидкий азот, с температурой -196°C. Продолжительность криовоздействия 20-25 сек.

Эффективность лечения составляет – 100%

Исследование спирального детандера на различных рабочих веществах Параметры испытываемой машины

Для испытаний был выбран спиральный компрессор Mitsubishi MSC90CAS, модифицированный для работы в режиме детандера.

Характеристики:

- Эксцентриситет ε =6 мм
- Шаг спирали *t*=20 мм
- Начальный угол $\phi_1 = \pi/2$
- Закрутка θ_n =4,3 π
- Высота спирали h=30 мм

Преимущества:

- 1. Машина сальниковая, что позволяет снимать мощность непосредственно с вала машины.
- 2. Легкоразборная конструкция.
- 3. Подшипники качения позволяют работать в широком диапазоне n_o .
- 4. Относительно малы габариты и масса.

Спиральный детандер

Испытания на аргоне

Испытания на R141b

МЕТОДЫ МОЛЕКУЛЯРНОГО ВОЗДЕЙСТВИЯ НА КРИСТАЛЛИЧЕСКУЮ СТРУКТУРУ И МАКРОПАРАМЕТРЫ ЛЕДОВЫХ ПОКРЫТИЙ

Новый подход


Управление процессом кристаллизации и создание источника дополнительной смазки внутри ледового покрытия.

Способ

Воздействие на формирование кристаллической структуры поверхностного слоя введением микродоз полимерных соединений.

Результат

Создание регулярной структуры льда, разделённой на ячейки характерного размера и содержащей "связанную" воду в межзёренном пространстве.

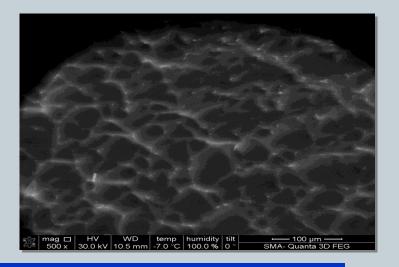
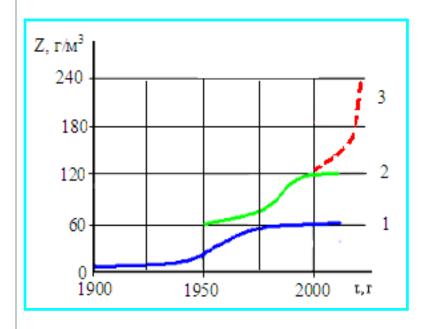
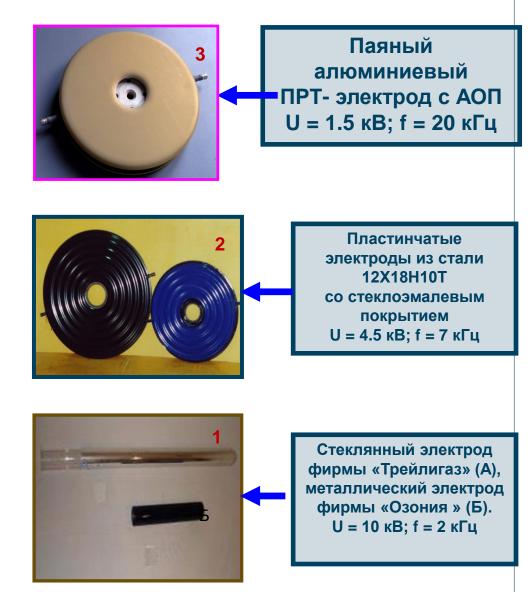
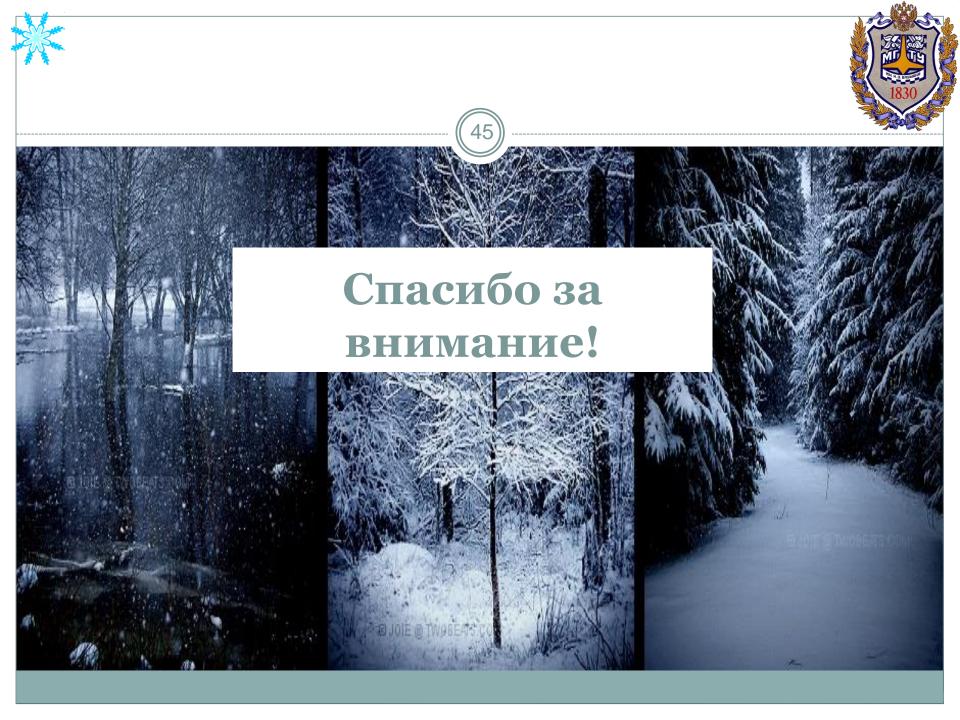



Рисунок 1 - Структура модифицированного полимером льда


Общий вид стенда озонаторной установки с ПРЭ



Эффективность синтеза озона:

Характер развития технических систем применительно к озонаторам («S-закон»)

